
2 Mathematical Background

Before we begin learning algorithmic techniques, we take a detour to give ourselves some
necessary mathematical tools. First, we cover mathematical definitions of terms that are used
later on in the book. By expanding your mathematical vocabulary you can be more precise
and you can state or formulate problems more simply. Following that, we cover techniques
for analysing the running time of an algorithm. After each major algorithm covered in this
book we give an analysis of its running time as well as a proof of its correctness

2.1 Asymptotic Notation

In addition to correctness another important characteristic of a useful algorithm is its time
and memory consumption. Time and memory are both valuable resources and there are
important differences (even when both are abundant) in how we can use them.

How can you measure resource consumption? One way is to create a function that describes
the usage in terms of some characteristic of the input. One commonly used characteristic of
an input dataset is its size. For example, suppose an algorithm takes an input as an array of
n integers. We can describe the time this algorithm takes as a function f written in terms
of n. For example, we might write:

f(n) = n2 + 3n+ 14

where the value of f(n) is some unit of time (in this discussion the main focus will be
on time, but we could do the same for memory consumption). Rarely are the units of
time actually in seconds, because that would depend on the machine itself, the system it's
running, and its load. Instead, the units of time typically used are in terms of the number
of some fundamental operation performed. For example, some fundamental operations we
might care about are: the number of additions or multiplications needed; the number of
element comparisons; the number of memory-location swaps performed; or the raw number
of machine instructions executed. In general we might just refer to these fundamental
operations performed as steps taken.

Is this a good approach to determine an algorithm's resource consumption? Yes and no.
When two different algorithms are similar in time consumption a precise function might
help to determine which algorithm is faster under given conditions. But in many cases it
is either difficult or impossible to calculate an analytical description of the exact number
of operations needed, especially when the algorithm performs operations conditionally on
the values of its input. Instead, what really is important is not the precise time required to
complete the function, but rather the degree that resource consumption changes depending
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on its inputs. Concretely, consider these two functions, representing the computation time
required for each size of input dataset:

f(n) = n3−12n2 + 20n+ 110

g(n) = n3 +n2 + 5n+ 5

They look quite different, but how do they behave? Let's look at a few plots of the function
(f(n) is in red, g(n) in blue):

Figure 1 Plot of f and g, in range 0 to
5

Figure 2 Plot of f and g, in range 0 to
15

Figure 3 Plot of f and g, in range 0 to
100

Figure 4 Plot of f and g, in range 0 to
1000

In the first, very-limited plot the curves appear somewhat different. In the second plot they
start going in sort of the same way, in the third there is only a very small difference, and at
last they are virtually identical. In fact, they approach n3, the dominant term. As n gets
larger, the other terms become much less significant in comparison to n3.

As you can see, modifying a polynomial-time algorithm's low-order coefficients doesn't help
much. What really matters is the highest-order coefficient. This is why we've adopted a
notation for this kind of analysis. We say that:

f(n) = n3−12n2 + 20n+ 110 =O(n3)

We ignore the low-order terms. We can say that:
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O(logn)≤O(
√
n)≤O(n)≤O(n logn)≤O(n2)≤O(n3)≤O(2n)

This gives us a way to more easily compare algorithms with each other. Running an insertion
sort on n elements takes steps on the order of O(n2). Merge sort sorts in O(n logn) steps.
Therefore, once the input dataset is large enough, merge sort is faster than insertion sort.

In general, we write

f(n) =O(g(n))

when

∃c > 0,∃n0 > 0,∀n≥ n0 : 0≤ f(n)≤ c ·g(n).

That is, f(n) =O(g(n)) holds if and only if there exists some constants c and n0 such that
for all n > n0 f(n) is positive and less than or equal to cg(n).

Note that the equal sign used in this notation describes a relationship between f(n) and
g(n) instead of reflecting a true equality. In light of this, some define Big-O in terms of a
set, stating that:

f(n) ∈O(g(n))

when

f(n) ∈ {f(n) : ∃c > 0,∃n0 > 0,∀n≥ n0 : 0≤ f(n)≤ c ·g(n)}.

Big-O notation is only an upper bound; these two are both true:

n3 =O(n4)

n4 =O(n4)

If we use the equal sign as an equality we can get very strange results, such as:

n3 = n4

which is obviously nonsense. This is why the set-definition is handy. You can avoid these
things by thinking of the equal sign as a one-way equality, i.e.:

n3 =O(n4)

does not imply
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O(n4) = n3

Always keep the O on the right hand side.

2.1.1 Big Omega

Sometimes, we want more than an upper bound on the behavior of a certain function. Big
Omega provides a lower bound. In general, we say that

f(n) = Ω(g(n))

when

∃c > 0,∃n0 > 0,∀n≥ n0 : 0≤ c ·g(n)≤ f(n).

i.e. f(n) = Ω(g(n)) if and only if there exist constants c and n0 such that for all n>n0 f(n)
is positive and greater than or equal to cg(n).

So, for example, we can say that

n2−2n= Ω(n2), (c=1/2, n0=4) or

n2−2n= Ω(n), (c=1, n0=3),

but it is false to claim that

n2−2n= Ω(n3).

2.1.2 Big Theta

When a given function is both O(g(n)) and Ω(g(n)), we say it is Θ(g(n)), and we have a
tight bound on the function. A function f(n) is Θ(g(n)) when

∃c1 > 0,∃c2 > 0,∃n0 > 0,∀n≥ n0 : 0≤ c1 ·g(n)≤ f(n)≤ c2 ·g(n),

but most of the time, when we're trying to prove that a given f(n) = Θ(g(n)), instead of
using this definition, we just show that it is both O(g(n)) and Ω(g(n)).

2.1.3 Little-O and Omega

When the asymptotic bound is not tight, we can express this by saying that f(n) = o(g(n))
or f(n) = ω(g(n)). The definitions are:

f(n) is o(g(n)) iff ∀c > 0,∃n0 > 0,∀n≥ n0 : 0≤ f(n)< c ·g(n) and

f(n) is ω(g(n)) iff ∀c > 0,∃n0 > 0,∀n≥ n0 : 0≤ c ·g(n)< f(n).
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Note that a function f is in o(g(n)) when for any coefficient of g, g eventually gets larger
than f, while for O(g(n)), there only has to exist a single coefficient for which g eventually
gets at least as big as f.

[TODO: define what T(n,m) = O(f(n,m)) means. That is, when the running time of an
algorithm has two dependent variables. Ex, a graph with n nodes and m edges. It's important
to get the quantifiers correct!]

2.2 Algorithm Analysis: Solving Recurrence Equations

Merge sort of n elements: T (n) = 2∗T (n/2)+ c(n) This describes one iteration of the merge
sort: the problem space n is reduced to two halves (2 ∗T (n/2)), and then merged back
together at the end of all the recursive calls (c(n)). This notation system is the bread and
butter of algorithm analysis, so get used to it.

There are some theorems you can use to estimate the big Oh time for a function if its
recurrence equation fits a certain pattern.

[TODO: write this section]

2.2.1 Substitution method

Formulate a guess about the big Oh time of your equation. Then use proof by induction to
prove the guess is correct.

[TODO: write this section]

2.2.2 Summations

[TODO: show the closed forms of commonly needed summations and prove them]

2.2.3 Draw the Tree and Table

This is really just a way of getting an intelligent guess. You still have to go back to the
substitution method in order to prove the big Oh time.

[TODO: write this section]

2.2.4 The Master Theorem

Consider a recurrence equation that fits the following formula:

T (n) = aT

(
n

b

)
+O(nk)
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for a ≥ 1, b > 1 and k ≥ 0. Here, a is the number of recursive calls made per call to the
function, n is the input size, b is how much smaller the input gets, and k is the polynomial
order of an operation that occurs each time the function is called (except for the base cases).
For example, in the merge sort algorithm covered later, we have

T (n) = 2T
(
n

2

)
+O(n)

because two subproblems are called for each non-base case iteration, and the size of the
array is divided in half each time. The O(n) at the end is the "conquer" part of this divide
and conquer algorithm: it takes linear time to merge the results from the two recursive calls
into the final result.

Thinking of the recursive calls of T as forming a tree, there are three possible cases to
determine where most of the algorithm is spending its time ("most" in this sense is concerned
with its asymptotic behaviour):

1. the tree can be top heavy, and most time is spent during the initial calls near the
root;

2. the tree can have a steady state, where time is spread evenly; or
3. the tree can be bottom heavy, and most time is spent in the calls near the leaves

Depending upon which of these three states the tree is in T will have different complexities:

The Master Theorem

Given T (n) = aT
(
n
b

)
+O(nk) for a ≥ 1, b > 1 and k ≥ 0:

• If a < bk, then T (n) =O(nk) (top heavy)
• If a= bk, then T (n) =O(nk · logn) (steady state)
• If a > bk, then T (n) =O(nlogb a) (bottom heavy)

For the merge sort example above, where

T (n) = 2T
(
n

2

)
+O(n)

we have

a= 2, b= 2,k = 1=⇒bk = 2

thus, a= bk and so this is also in the "steady state": By the master theorem, the complexity
of merge sort is thus

T (n) =O(n1 logn) =O(n logn)
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2.3 Amortized Analysis

[Start with an adjacency list representation of a graph and show two nested for loops: one
for each node n, and nested inside that one loop for each edge e. If there are n nodes and m
edges, this could lead you to say the loop takes O(nm) time. However, only once could the
innerloop take that long, and a tighter bound is O(n+m).]
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